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Labeled Data > Learr.ung —> Model
Algorithm

Examples:
Decision Trees

Support Vector Machine (SVM)
Maximum Entropy (MaxEnt)
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Why SSL?

How can unlabeled data be helpful?

More accurate
decision boundary

Labeled in the presence of
Instances unlabeled instances
sss N “a ','
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"¢¢' ’ ! Dfdﬂ, cﬂ_‘\ %D -
| é )‘ AN
Decision | j
Boundary | e ® | Unlabeled
Instances
Without Unlabeled Data With Unlabeled Data

Example from [Belkin et al., JMLR 2006]
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Inductive vs Transductive

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to
Unseen Data)

SVM,
Maximum Entropy

Manifold
Regularization

. Focus of this

tutorial

Label Propagation

(LP), MAD, MP, ...

Most Graph SSL algorithms are non-parametric
(i.e., # parameters grows with data size)

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf
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Why Graph-based SSL?

® Some datasets are naturally represented by a graph

® web, citation network, social network, ...

® Uniform representation for heterogeneous data
® FEasily parallelizable, scalable to large data

® Effective in practice |
-* Graph SSL |

T*- Non-Graph SSL l

2

" Supervised |

Text Classification
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Number of Labeled Documents
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Graph-based SSL

Smoothness Assumption
If two instances are similar X
according to the graph, then N

output labels should be similar

X;  sim(x;,X;)

* Two stages
* Graph construction (if not already present)
* Label Inference
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Graph Construction

® Neighborhood Methods

® k-NN Graph Construction (k-NNG)
® e-Neighborhood Method

® Metric Learning

® Other approaches
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Issues with k-NNG

* Not scalable (quadratic)
* Results in an asymmetric graph ©, b ©

* b is the closest neighbor of a, but not
the other way

* Results in irregular graphs O

* some nodes may end up with

higher degree than other nodes O ‘ O
Vf\

O Node of degree 4 in
the k-NNG (k= 1)
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Issues with ¢~-Neighborhood

* Not scalable

* Sensitive to value of e : not invariant to scaling

* Fragmented Graph: disconnected components

Data
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- .o A ’ .' e
-
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.
( 0 0

Disconnected

e-Neighborhood

Figure from [Jebara et al., ICML 2009]
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Da(wi wj) = (v — x;)" Alw; — ;)

Estimated using
Mahalanobis metric
learning algorithms




Graph Construction using
Metric Learning

@ w;; o< exp(—Da(x;, x;)) @

® Supervised Metric Learning

 ITML [Kulis et al., ICML 2007] Estimated using

learning algorithms

Mahalanobis metric
e | MNN [Weinberger and Saul, JMLR 2009]

® Semi-supervised Metric Learning

e |DML [Dhillon et al., UPenn TR 2010]

|5
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Benefits of Metric Learning for
Graph Construction

[ ] Original W RP PCA 5 ITML IDML »
0.5 A .

Graph constructed Graph constructed using
using supervised semi-supervised
~ metric learning

74
4
24
4

metric learning

0.375 [Dhillon et al., 2010]
G
O 025
|
LLl
0.125

Amazon Newsgroups Reuters Enron A Text

100 seed and 1400 test instances, all inferences using LP

16 [Dhillon et al., UPenn TR 2010]



Benefits of Metric Learning for
Graph Construction

B Original [ RP PCA [ ITML IDML »
0.5 A -
Graph constructed Graph constructed using
using supervised semi-supervised

0.375 e e ' quaerfﬁilirl]e::r:ﬁgzo 10]
0.25 -
0.125 ' |
0

Amazon Newsgroups Reuters Enron A Text

4
l
I

Error

100 seed and 1400 test instances, all inferences using LP

| Careful graph construction is critical! |

16 [Dhillon et al., UPenn TR 2010]




Other Graph Construction
Approaches

® | ocal Reconstruction

® Linear Neighborhood [Wang and Zhang, ICML 2005]
® Regular Graph: b-matching [Jebara et al., ICML 2008]
e Fitting Graph to Vector Data [Daitch et al., ICML 2009]

® Graph Kernels
® [Zhu et al,, NIPS 2005]



Qutline

® Motivation

Label Propagation

Modified Adsorption
Measure Propagation
Sparse Label Propagation

- Manifold Regularization

- Spectral Graph Transduction

® Graph Construction

Inference Methods

® Scalability

® Applications

® Conclusion & Future Work
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Graph Laplacian

* Laplacian (un-normalized) of a graph:

L =D —W,where Dy = » W;j, Dyjz =0

a b ¢ d
a3 1 -2 0
bl -1 4 -3 0
.12 3 6 -
410 0 -1 1

\ J
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fALf = ZWij(fi — fi)°
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* Smoothness of prediction f over the graph in
terms of the Laplacian:

Measure of
Non-Smoothness
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-

fALf = ZWij(fi — fi)°
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* Smoothness of prediction f over the graph in
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Graph Laplacian (contd.)

| is positive semi-definite (assuming non-negative weights)

* Smoothness of prediction f over the graph in
terms of the Laplacian:

Measure of
Non-Smoothness

|
“
“
-

Vector of scores for

single label on nodes

YTLf = ZWw — £3)3

25

T = [1113] ff=11105 25]

fTLf =4  Smooth ' fTLf — 983  Not Smooth |
20
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Lg = \g

g'Lg=X\g" g
gt Lg = \
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Relationship between Eigenvalues of
the Laplacian and Smoothness

Eigenvector of L '~~\~ """" Eigenvalue of L '
Lg = Ag
T o T
g'Lg = Ng' g

"=~ = |,as eigenvectors
T l: A are are orthonormal
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Relationship between Eigenvalues of
the Laplacian and Smoothness

Eigenvector of L l\x _.- FEigenvalue of L '

“u
~
i
L ]

= |, as eigenvectors

T L A are are orthonormal

Measure of
Non-Smoothness
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Relationship between Eigenvalues of
the Laplacian and Smoothness

Eigenvector of L I\x _.- FEigenvalue of L '

Q
~
b‘
Q
|
=
~
Q

“u
L ]
i
L ]

= |, as eigenvectors

A are are orthonormal
g Lg=A,
% 4 wLra— |
If an eigenvector is used to
Measure of - classify nodes, then the
Non-Smoothness corresponding eigenvalue gives
(previous slide) the measure of non-smoothness
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Spectrum of the Graph Laplacian

(a) a linear unweighted graph with two segments
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(b) the eigenvectors and eigenvalues of the Laplacian L

22

T [‘ ROy
L

-

;,-'_w;gj:;]xg;;,
(e A

A A
“ NN 4

A, 5=3.OO

A, =3.96
20

Higher Eigenvalue,
Irregular Eigenvector,
Less smoothness

Figure from [Zhu et al., 2005]
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Notations

Y, 1 :score of estimated label | on node v Seed Scores

Label
Regularization

Y., 1 :score of seed label | on node v
Estimated

Scores

R, : regularization target for label | on node v

S :seed node indicator (diagonal matrix)

W : weight of edge (u, v) in the graph

24



LP-ZGL [Zhu et al,, ICML 2003]

m m

. A N2 T 7%

arg min E Waw (Yur — Yor)© = ZYZ f l
L I=1

such that Yul — Yul7 \V/Suu =1 Gi*aph

Laplacian

25



LP-ZGL [Zhu et al,, ICML 2003]

Smooth
Cm m
. ~ ~ T 1Y
arg min E Woo (Y — Yor)? :ZYZ f z
Y li=1 =1
such that Yul — Yul7 \V/Suu — 1 G:*aph

Laplacian

25



LP-ZGL [Zhu et al,, ICML 2003]

Smooth
" m m
. A SHENG ’ )
arg min Z Wo Y — Yo )2 [= ) Ysz z
Y =1 =1
such that [Yul — Yula \V/Suu — 1] G:*aph

Laplacian

Match Seeds
(hard)
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LP-ZGL [Zhu et al,, ICML 2003]

Smooth
' m m
: ~ "\ 2 ’ >
arg min Z Wo Y — Yo )2 [= ) Ysz z
Y li=a =1
such that [Yul — Yula \V/Suu — 1] G:*aph
Match Seeds —_—
(hard)

® Smoothness

® two nodes connected by
an edge with high weight
should be assigned similar

labels
25



LP-ZGL [Zhu et al,, ICML 2003]

Smooth
— .
Yoli= =1
such that [Yul — Yula VSW — 1] G:’aph
Laplaci
Match Seeds —
(hard)
® Smoothness ® Solution satisfies harmonic
® two nodes connected by property

an edge with high weight
should be assigned similar

labels
25



Qutline

® Motivation

, ~ Label Propagation
¢ Graph Construction Modified Adsorption
I Manifold Regularization

® |nference Methods ~ | Spectral Graph Transduction

- Measure Propagation

® Scalability
® Applications

® Conclusion & Future Work
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Two Related Views

Unlabeled Node '

Labeled (Seeded) | Label Diffusion
Node s "
‘ VAVA S

Random Walk

‘4 VAVA Y
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Random Walk View

what next? Starting node

NI
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Random Walk View

what next? Starting node

t

e Continue walk with probability p;,~"

inj

* Assign V’s seed label to U with probability Py

* Abandon random walk with probability p3°ne

e assign U a dummy label

28
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® do not allow propagation/walk through them
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nodes:
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Discounting Nodes

® Certain nodes can be unreliable (e.g, high degree nodes)

® do not allow propagation/walk through them

® Solution: increase abandon probability on such
nodes:

p2PPd  degree(v)

29



Redefining Matrices

/

cont
W =7 X W

New Edge -
Weight _ tmj

abnd
RuT — Py

, and 0 for non-dummy labels

Dummy Label

30



Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
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Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

e m labels, +1 dummy label

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Y ,;: seed weight for label [ on node v
S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

31

\%

HSYZ — SYlH2 + 1 ZMUU(}A}ul — fffl)l)Z + ,UQH}AZZ — RlH2

[=1 L u,v

I
Y_LI Seed Scores
o \ Label Priors

Estimated
Scores




argmin Z HS?[ — SY[H2 + 1 ZMQ,U(}A/UJZ — sz)Z - Mz”ffl o RlH2

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

Match Seeds (soft)

[=1 B / u,v

e m labels, +1 dummy label

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v
Y ,;: seed weight for label [ on node v
S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

31

\%

I
Y_LI Seed Scores
o \ Label Priors

Estimated
Scores




m-+1
arg min Z 1SY; — SY||* B 11
Y
[=1 \ J

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

Match Seeds (soft)

Smooth

e m labels, +1 dummy label

Z M (Y

L.

Y ﬁmu?z—w

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Y ,;: seed weight for label [ on node v

\%

| _I

.- U

S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

31

Seed Scores
Label Priors

Estimated
Scores




Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min Z |SY,

[=1 [\

— SY|°

Match Seeds (soft)

+ [

Smooth

e m labels, +1 dummy label

L.

M=W"+ W'is the symmetrized weight matrix

A

Y ,;: weight of label [ on node v

Match Priors
(Regularizer)

ZMM ul — )1 2l Y1 - ng]]

Y ,;: seed weight for label [ on node v \4

I
_I Seed Scores

o Label Priotrs

S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v

31

> Estimated
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Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min Z ISY,

[=1 [\

— SY|°

Match Seeds (soft)

+ [

Smooth

e m labels, +/1\ dummy label

L.

— C for none-of-the-above label )d weight matrix

A

Y ,;: weight of label [ on node v

Match Priors
(Regularizer)

ZMUU ul — )1 2l Y1 - ng]]

Y ,;: seed weight for label [ on node v \4

I
_I Seed Scores

o Label Priotrs

S: diagonal matrix, nonzero for seed nodes

R,;: regularization target for label [ on node v
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Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min ISY,
=1 &

— SY|°

Match Seeds (soft)

+ [

Smooth

e m labels, +/1\ dummy label

Z M (Y

L.

Match Priors
(Regularizer)

=Y ﬁmu?z—w]

o M — C for none-of-the-above label )d weight matrix

A

e Y ;. weight of label [ on node v

e Y ;: seed weight for label [ on node v

\%

I
_I Seed Scores

o Label Priotrs

e S: diagonal matrix, nonzero for seed nodes

e R,;: regularization target for label [ on node v

> Estimated
YU Scores

MAD has extra regularization compared to LP-ZGL
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]




Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

arg min ISY,
=1 &

— SY|°

Match Priors

Match Seeds (soft) Smooth (Regularizer)

b S M (Y - ﬁmufﬁ - RzH?]

L.

e m labels, +/1\ dummy label

o M — C for none-of-the-above label }d weight matrix

. . |
e Y ;. weight of label [ on node v \ Seed Scofes
. .-'z; L b IPfl r
e Y ;: seed weight for label [ on node v \'% abel Friors
\D Estimated
e S: diagonal matrix, nonzero for seed nodes Y/ Scores

e R,;: regularization target for label [ on node v

MAD’s Obijective
is Convex

MAD has extra regularization compared to LP-ZGL
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]
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® Can be solved using matrix inversion (like in LP)

® but matrix inversion is expensive
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Solving MAD Objective

® Can be solved using matrix inversion (like in LP)

® but matrix inversion is expensive
® |nstead solved exactly using a system of linear
equations (Ax = b)
® solved using Jacobi iterations
® results in iterative updates
® guaranteed convergence

® see [Bengio et al.,2006] and
[Talukdar and Crammer, ECML 2009] for details
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Solving MAD using Iterative Updates

Inputs Y, R : |V| x (|[L|+ 1), W :|V]| x |V]|, §:|V]| x |V| diagonal
Y ~—Y /
M=Ww+w"
Lo %SUU—F,LLlEU#UMUu—FILLQ YveV
repeat
for allv €V do A
Y, ((SY)U M, Y + MQRU)
end for
until convergence

Current label | 7|
1 .
estimate on b ¢°

0.60 0.75
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Solving MAD using Iterative Updates

Inputs Y, R: |V| x (|[L|+ 1), W : |[V| x |V|, §:|V]| x |V]| diagonal
Y «Y /
M=Ww+w"
Lo %SW—F/“ZU#UMW—F/LQ YveV
repeat

for allv €V do A

Y, ((SY)U M, Y + MRU)

end for

until convergence

New label
estimate on v

4 )

* Importance of a node can be discounted

* Easily Parallelizable: Scalable (more later)

\
33
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When is MAD most effective!?

©
n

LP-ZGL

o
w

n se in MRR by MAD over
o
N
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Label Similarity in Sentiment Classification

Modified Adsorption with Dependent Labels
(MADDL) [ Talukdar and Crammer, ECML 2009]

e Can take label similarities into account
e Convex Obijective
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Extension to Dependent Labels

Labels are not always mutually exclusive

o =t ) (el ek

Label Similarity in Sentiment Classification

Modified Adsorption with Dependent Labels
(MADDL) [ Talukdar and Crammer, ECML 2009]

e Can take label similarities into account
e Convex Obijective
e Efficient iterative/parallelizable updates as in MAD
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Divergence on
seed nodes
arg ?Hn Z[DKL Tszz \"‘ H Z wi; DKL szpJ —V Z H pz
pi}

St sz _]- pz )207 \V/y,

Seed and estimated label
distributions (normalized)
on node i
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Divergence on Smoothness
seed nodes (divergence across edge)
afg]f{ﬂlﬂ Z[DKL Tszz \JF,U E [wngKL szpg]— v E :H (pi)
pi }

At sz ) =1, piy) S 0, Yy, i

Seed and estimated label

distributions (normalized)

KL Dlvergence

(¥)

y)
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Diver'gence on Smoothness En'rr'opic Regularizer
seed nodes (divergence across edge) .
al'g {f{ﬂlﬂ Z[DKL (75 \ pi) \Jr f Z[wzg DKL (pi] ‘pg)] [ Z {f(pz )]
pi }
=1,
S t sz = 1, pz(y) “E 0, \V/yai ,"

I
4 l | )
O

Seed and estimated label

distributions (normalized) )
on node | D1 (pillpy) Zp log H(p) = —> pi(y)logpi(y)

KL Divergence Entropy
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Diver'gence on Smoothness Enfropic Regularizer
seed nodes (divergence across edge) .
arg {f{ﬂlﬂ Z[DKL (74 \ pi) \Jr P E [wzg DKL (pi] ‘pg)] [ E : {f(pz )]
pi} —
s t E pz(y) =1, pz(y) ‘2 0, Vy,1 /
'l':l Yy '1 “‘ l"
S.eec.l anFI estimated I.a bel K KL Dlvergencé Entropy
distributions (normalized) Re W)
on node i ',' Dk 1. (pillpj) Zp log y) H(p;) = —zy:pi(y) log p;(y)

Normalization Constraint l
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Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 201 1]

CKL Diver'gence on Smoothness En'l'r'opic Regularizer
seed nodes (divergence across edge) .
arg{{[nmz:[DKL ’I“szq, \—I—,u g [wZ]-DKL Pszg)] [ E {J(pz)]
Pi} —
o ,St E pZ —1 pz( )‘ZO Yy, 1 B
S.eec.l anFI estimated I.a bel /' KL Dlvergencé Entropy
distributions (normalized) Re W)
on node i ',' Dk 1. (pillpj) Zp log y) H(pi) = — sz(y) log pi(y)
% Y

L4
»

Normalization Constraint l

CKL iS CONVEX (with non-negative edge weights and hyper-parameters)
MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]
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Solving MP Obijective

® For ease of optimization, reformulate MP objective:

Cmp

[ n
arg min Y Dy (rillg:) + 1Y wy; Dir(pillay) — vy H(p;)

piait i i i—1
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measure, one for each
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Solving MP Obijective

® For ease of optimization, reformulate MP objective:

arg min ZDKL (rlla:) —I—,uZw Drr(pillgy) —VZH i)
i=1

7] f\ 1=1

: / ! . .
New probability Wi = Wij T O‘,‘i 5(7’7 ])I

measure, one for each
vertex, similar to p;

L ]
~
~
~
~
~
~
N
§~
~L

Encourages agreement
between p; and q;

argmin Cxz(p) = lim argmin Cmp(p;q)

pEA” > p,qEA”"

38



Solving MP Obijective

® For ease of optimization, reformulate MP objective:

arg min ZDKL (rlla:) —I—,uZw Drr(pillgy) —VZH i)

7.7 f 1=1

: / ! . .
New probability Wi = Wij T O‘Ji 5(Z7 ])'

measure, one for each
vertex, similar to p;

N
~
~
~
~
~N
~
~
§~
~L

Encourages agreement

CwMmp is also convex between p;and g

. . . argmin Cxz(p) = llm argmm Cup(p,q)
(with non-negative edge weights and hyper-parameters) pEA” ™ pgea”
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Solving MP Obijective

® For ease of optimization, reformulate MP objective:

arg min ZDKL e —I—,uZw Drr(pillgy) —VZH i)
i=1

I
I 1
1 1
1 1
1 / -

New probability Wi = Wij T O“X 5(27 ])I
h.
measure, one foreach | S
vertex, similartop; |  Ttsl
Encourages agreement
Cwmp is also convex between piand g;
. . . argmin Cx.(p) = lim argmin Cy (p,q)
(with non-negative edge weights and hyper-parameters) pea” “pacar

[ Cwmp can be solved using Alternating Minimization (AM) j

38




Alternating Minimization

P Given distance d(P, Q)

Convex sets P and O. ,
with P € P and Q € Q.
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Given distance d(P, Q)
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Start with Qg € 9

D

Convex sets P and O.

P; = argmin d(P, Qo)
l)

QL= argcgnin d(P1, Q)
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Alternating Minimization

Convex sets P and O.

D
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Given distance d(P, Q)
with P € P and Q € Q.

Start with Qg € 9
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P2 — argmin d(Ps (21)
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Alternating Minimization

Given distance d(P, Q)
with P € P and Q € Q.

Start with Qg € O

Convex sets P and O. P

P; = argmin d(P, Qo)
P

Q1 = argmin d(P1, Q)
Q@

P> = argmin d(P, Q1)
P
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Why AM?

Criteria MOM AM
[terative YES YES
Learning Rate Armijo Rule None
Number of Hyper-parameters 7 1 (o)
Test for Convergence Requires Tuning Automatic
Update Equations Not Intuitive Intuitive and easily Parallelized

Table 1: There are two ways to solving the proposed objective, namely, the popular numerical op-
timization tool method of multipliers (MOM), and the proposed approach based on alter-
nating minimization (AM). This table compares the two approaches on various fronts.
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Why AM?

Criteria MOM AM
[terative YES YES
Learning Rate Armijo Rule None
Number of Hyper-parameters 7 1 (o)
Test for Convergence Requires Tuning Automatic
Update Equations Not Intuitive Intuitive and easily Parallelized

4
4

Table 1: There are two ways to solving the proposed objective, namely, the popular numerical op-
timization tool method of multipliers (MOM), and the proposed approach based on alter-
nating minimization (AM). This table compares the’two approaches on various fronts.

74

exp{£ 3, wj;logg;" " (»)}
>, exp{£3,wj;logg" ()}

() = OGS D +uZp )
| (i <1)+uZ;w;

p" (y) =

where y; = v+ud.; w:.j
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Performance of SSL Algorithms

COIL OPT
) 10 20 50 80 | 100 | 150 10 20 50 80 | 100 | 150
k-NN 345 |1339 | 669 | 719 | 192 | 833 || 796 | 839 | 855 | 905 | 920 | 938
SGT 40.1 | 61.2 | 78.0 | 88.5 | 89.0 | 899 || 904 | 90.6 | 91.4 | 94.7 | 97.4 | 97.4
LapRLS || 49.2 | 614 | 784 | 80.1 | 84.5 | 87.8 | 89.7 | 91.2 | 92.3 | 96.1 | 97.6 | 97.3
SQ-Loss-I || 48.9 | 63.0 | 81.0 | 87.5 | 89.0 | 90.9 || 92.2 | 90.2 | 95.9 | 97.2 | 97.3 | 97.7
MP 47.7 | 65.7 | 785 | 89.6 | 90.2 | 91.1 || 90.6 | 90.8 | 94.7 | 96.6 | 97.0 | 97.1

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets
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Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets
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Performance of SSL Algorithms

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets

-

Graph SSL can be effective when the data satisfies manifold
assumption. More results and discussion in Chapter 21 of

the SSL Book (Chapelle et al.)

\
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Background: Factor Graphs
[Kschischang et al,, 2001 ]

Factor Graph
* bipartite graph
e variable nodes (e.g., label distribution on a node)
e factor nodes: fitness function over variable assignment

‘..'~
Variable Nodes (V) '

™
~
~
~
-,
=~

Factor Nodes (F) '

Distribution over all variables’ values

log P ({vtvey) = —logZ + Z log oy ({Uw}(v,f)eE)

JEF X .
variables connected

43 to factor f




Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms) l

. Seed Matching Edge Smoothness Regularization
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms) l

. Seed Matching Edge Smoothness Regularization

v
| 2

w1 2 ||Q1 —612|
Q=0
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms)

. Seed Matching Edge Smoothness Regularization

me ||Q1 —Q2||©
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms)

Seed Matching Regularization
Loss (if any)

min

Smoothness
ql C]2 X ’w1 2 ||C]1 — CI2||
Factor
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Factor Graph Interpretation of
G raph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

3-term Graph SSL Objective (common to many algorithms)

Seed Matching Edge Smoothness Regularization
Loss (if any) Loss Loss

min

Regularization
factor (unary)

l 4

-
-
-
-
-
-

, -

, -

g -

-
-
P
-

Smoothness
ql C]2 X ’w1 2 ||C]1 — CI2||
Factor



Factor Graph Interpretation
[Zhu et al., ICML 2003][Das and Smith, NAACL 2012]

..
~
~
~
~
~
..
~

Qo264

3. Unary factor for
2. Smoothness regularization
Factor @ @ log ¥t (q¢)
() ——>
o B
@ @ |. Factor encouraging

agreement on seed
labels

24
Y4
24

Qo266
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Label Propagation with Sparsity



Label Propagation with Sparsity

Enforce through sparsity inducing unary factor
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Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

Lasso (Tibshirani, 1996) log1:(q:) = — A ||qe|l;

Elitist Lasso (Kowalski and Torresani, 2009) ,
log ¥¢(q¢) = —A(llaell,)
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Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

Lasso (Tibshirani, 1996) log1:(q:) = — A ||qe|l;

Elitist Lasso (Kowalski and Torresani, 2009) ,
log ¥¢(q¢) = —A(llaell,)

For more details, see [Das and Smith, NAACL 201 2]|
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Manifold Regularization
[Belkin et al., JMLR 2006]

[
£ = argmin 1 3" Vi, £(20)) + B 7LF + 11l
1=1
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Manifold Regularization
[Belkin et al., JMLR 2006]

Training Data
Loss

-
f* = argmfiﬂj zz;[‘{(yuf(%))]—l_ﬁ fPLf + A1l

Loss Function
(e.g., soft margin)
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Manifold Regularization
[Belkin et al., JMLR 2006]

Training Data Smoothness
Loss Regularizer

f* = argmm l z:[V (s, f23)) ]4—[5 fTLf]'\‘/VHfHK

Laplacian of graph
over labeled and
unlabeled data

Loss Function
(e.g., soft margin)
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Manifold Regularization
[Belkin et al., JMLR 2006]

Training Data Smoothness Regularizer
Loss Regularizer  (e.g., L2)

f* _argmm ; z:[V (ys, fx;)) ]#—[ﬁ fTLf]'F[’YHfHK]

Laplacian of graph
over labeled and
unlabeled data

Loss Function
(e.g., soft margin)
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Manifold Regularization
[Belkin et al., JMLR 2006]

Training Data Smoothness Regularizer
Loss Regularizer  (e.g., L2)

f* _argmm ; z:[V (ys, fx;)) ]ﬁ—[ﬁ fTLf]'F[”YHfHK]

Laplacian of graph
over labeled and
unlabeled data

Loss Function
(e.g., soft margin)

-

Trains an inductive classifier which can generalize
to unseen instances

\
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Other Graph-based SSL Methods

® SSL on Directed Graphs
® [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]

® | earning with dissimilarity edges
® [Goldberg et al.,,AISTATS 2007]

® Spectral Graph Transduction [Joachims, ICML 2003]

® Graph Transduction using Alternating Minimization

® [Wang et al,,ICML 2008]

® Graph as regularizer for Multi-Layered Perceptron

e [Karlen et al, ICML 2008], [Malkin et al., Interspeech 2009]
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More (Unlabeled) Data is Better Data

Phone Recognition Accuracy
w Py
(0.0} o
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More (Unlabeled) Data is Better Data

Phone Recognition Accuracy
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More (Unlabeled) Data is Better Data
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Scalability Issues (1)

Graph Construction
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Scalability Issues (1)

Graph Construction

* Brute force (exact) k-NNG too expensive
(quadratic)
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Scalability Issues (1)

Graph Construction

* Brute force (exact) k-NNG too expensive
(quadratic)

 Approximate nearest neighbor using kd-
tree [Friedman et al,, 1977, also see http://

www.cs.umd.edu/"mount/]
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Scalability Issues (ll)

Label Inference

* Sub-sample the data

® Construct graph over a subset of a unlabeled
data [Delalleau et al., AISTATS 2005]

® Sparse Grids [Garcke & Griebel, KDD 2001]
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Scalability Issues (ll)

Label Inference

* Sub-sample the data

® Construct graph over a subset of a unlabeled
data [Delalleau et al., AISTATS 2005]

® Sparse Grids [Garcke & Griebel, KDD 2001]

® How about using more computation?! (next section)

® Symmetric multi-processor (SMP)

® Distributed Computer
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Motivation
Graph Construction

Inference Methods Scalability Issues

[ ode reordering

Scalab| I |t)’ [Subramanya & Bilmes, JMLR 201 [;
Bilmes & Subramanya, 201 1]

Applications

Conclusion & Future Work
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Parallel computation on a SMP
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Parallel computation on a SMP
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Parallel computation on a SMP

Processor |

Processor k G

Processor | @ ‘;
s « !
- s 1

4 D\ § R
SMP with k ' Graph nodes
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Label Update using Message Passing

Processor 2 ‘

Processor k G

Processor |

Current label
estimate on a

Processor | @, N
0.05
- N E ~“3!
SMP with k ' Graph nodes
Processors (neighbors not shown)
N y
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Label Update using Message Passing

Processor 2 ‘

Processor k G

\ W

Processor |

*s “‘| New label
R estimate on v
Processor | Ry
0.05
- N E ~“3!
SMP with k ' Graph nodes c
Processors (neighbors not shown)

U J
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speed-up
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Speed-up on SMP
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Node Reordering Algorithm

Input: Graph G = (V, )
Result: Node ordered graph
|. Select an arbrtrary node v

2. while unselected nodes remain do

2.|. select an unselected node v from among the
neighbors’ neighbors of v that has maximum
overlap with v neighbors

2.2. mark v as selected

2.3.setvtov

>9 [Subramanya & Bilmes, JMLR, 201 1]



Node Reordering Algorithm

Input: Graph G = (V, )
Exhaustive
for sparse

' (e.g. k-NN)
“ graphs

Result: Node ordered graph

|. Select an arbrtrary node v

7. while unselected nodes rem'ain do

2. 1. select an unselected'node v’ from among the

eishbors’ neighborof v that has maximum

overlap with v neighbors
2.2. mark v as selected

2.3.setvtov

>9 [Subramanya & Bilmes, JMLR, 201 1]
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Speed-up on SMP after Node Ordering
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Distributed Processing

¢ Maximize overlap between consecutive nodes
within the same machine

¢ Minimize overlap across machines (reduce inter
machine communication)
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Node reordering for Distributed Computer

Processor #i Processor #j
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Node reordering for Distributed Computer
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Distributed Processing Results

1 000 I 1 1 L] 1 1 1 I 1

® Dist. Heuristic with Scat + Bal + Pref (t = 25, k = 250)
* Dist. Heuristic with Scat + Pref (t = 25, k = 250)
9001 @ Dist. Heuristic with Scat (t =25)
® Dist. Heuristic (t =25)
goo @ SMP Heuristic d
B Random
700 »'a
,
. , \
600 - - - - - .
S e
2 5001 2, -
. ’ 5
8.. ” . - "
n - i
400 % 5o -
. ' , - - 0
. o e o
300 7 S04 - .
200 g -
100 T e R e B

100 200 300 400 500 600 700 800 900 1000
Number of Processors

65 [Bilmes & Subramanya, 201 1]



Qutline

® Motivation
® Graph Construction

® |nference Methods

. Scalability Issues
® Scalability |E

Node reordering
MapReduce Parallelization

® Conclusion & Future Work

® Applications

66
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Problem Description & Motivation

® Given a document (e.g., web page, news
article), assign it to a fixed number of
semantic categories (e.g., sports, politics,
entertainment)

® Multi-label problem

® Training supervised models requires large
amounts of labeled data [Dumais et al., 1998]
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Corpora

® Reuters [Lewis, et al., 1978]
® Newswire

® About 20K document with |35 categories. Use

9 ¢¢

top 10 categories (e.g., ‘earnings’, “acquistions’,

) ¢¢°

“wheat”, “interest”) and label the remaining as
“other”
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Corpora

® Reuters [Lewis, et al., 1978]
® Newswire

® About 20K document with |35 categories. Use

top 10 categories (e.g., ‘earnings’, “acquistions’,
) ¢C¢°

“wheat”, “interest”) and label the remaining as
“other”

® WebKB [Bekkerman, et al., 2003]
® 8K webpages from 4 academic domains

® Categories include “course”,“department”,
¢¢ 9 ¢¢ o 9
faculty” and “project”

2
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the Bahia cocoa
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Document
[Lewis, et al., 1978]
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Feature Extraction
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Results

Average
PRBEP SVM | TSVM | SGT LP MP | MAD

Reuters| 48.9 | 59.3 60.3 59.7 | 66.3 -

WebKB| 23.0 | 292 | 368 | 41.2 | 51.9 | 53.7

Precision-recall break even point (PRBEP)
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Results

Transductive Spectral Label Propagation
SVM Graph [Zhu & Ghahramani 2002]
[Joachims 1999] Transduction K .
Support v (SGT) K Measure Propagation
Vector . [Joachims 2003] K [Subramanya & Bilmes 2008]
Machine \ : 0 ’
(Supervised) \ ' K N Modified Adsorption
X \‘ ' ) f J [Talukdar & Crammer 2009]
\* ‘* ; *l " k',
Average
&5 SVYM [TSVM | SGT | LP | MP | MAD
PRBEP
Reuters| 48.9 | 59.3 | 60.3 | 59.7 | 66.3 -
WebKB| 230 | 29.2 | 368 | 41.2 | 51.9 | 53.7

Precision-recall break even point (PRBEP)
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Results on WebKB
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Problem Description

® Given a document either

® classify it as expressing a positive or
negative sentiment or

® assign a star rating
® Similar to text categorization

® Can be solved using standard machine
learning approaches [pang, Lee & Vaidyanathan, EMNLP 2002]
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Problem Description

* fortunately, they managed to do it in an interesting
and funny way.

* he is one of the most exciting martial artists on the

big screen.
* the romance was enchanting.

79 Movie review dataset [Pang et al. EMNLP 2002]



Problem Description

fortunately, they managed to do it in an interesting
and funny way.

he is one of the most exciting martial artists on the

big screen.

the romance was enchanting.

A woman in peril. A confrontation. An explosion.
The end.Yawn.Yawn. Yawn.

don’t go see this movie %i

79 Movie review dataset [Pang et al. EMNLP 2002]
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Polarity Lexicons (l)

® Large lists of phrases that encode the polarity
(positive or negative) of each phrase

® Positive polarity: “enjoyable”,“breathtakingly”,
“once in a life time”

® Negative polarity:“bad”, “humorless”,
) ¢

“unbearable”,“out of touch”,"bumps in the
road”

® Best results obtained by combining with machine

Iearning approaches [Wilson et al., HLT-EMNLP 05; Blair-
Goldensohn et al. 08; Choi & Cardie EMNLP 09]
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Polarity Lexicons (ll)

® Common strategy: start with two small seed sets
® P:positive phrases, e.g.,“great” “fantastic”
® N:negative phrases, e.g., “awful”,“dreadful”

® Grow lexicons with graph propagation algorithms
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Polarity Lexicons (ll)

® Common strategy: start with two small seed sets
® P:positive phrases, e.g.,“great” “fantastic”
® N:negative phrases, e.g., “awful”,“dreadful”
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Polarity Lexicons (ll)

® Common strategy: start with two small seed sets
® P:positive phrases, e.g.,“great” “fantastic”
® N:negative phrases, e.g., “awful”,“dreadful”

® Grow lexicons with graph propagation algorithms
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Graph Construction ()

® VWordNet [Hu & Liu, KDD 04; Kim & Hovy, ICCL 04; Blair-
Goldensohn 08; Rao & Ravichandran EACL 09]

® Defines synonyms, antonyms, hypernyms, etc.
® Make edges between synonyms
® Enforce constraints between antonyms
® [ssues
® coverage

® hard to find resources for all languages
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Graph Construction (ll)

® Use web data!

® All n-grams (phrases) up to length 10 from 4
billion web pages

® Pruned down to 20 million candidate
phrases

® Feature vector obtained by aggregating
words that occurred in local context

83 [Velikovich, et al.,, NAACL 2010]
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“Best Path to Seed” Propagation

SO-SO

G

Best PathJ .0 great —— N CE

ood 0.5

5 - ok

4 )
Key observation: sentiment phrases are those that have

short highly weighted paths to seed nodes

\§ J

87 [Velikovich, et al.,, NAACL 2010]



Results

Lexicon Phrases Positive Negative
Wilson et al. 2005 7,618 2,718 4,900
Al KSR R 12,310 5,705 6,605

[Blair-Goldensohn et al. 07]

Web GP
[Velikovich et al. 2010] 178,104 90,337 87,767

Size of the output lexicon

88
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.
Resulting lexicon is

larger in size and has
much better precision

) Results

&

y Positive

0.9 I:—

3
[

\

-

Wilson et al.
-------------- WordNet LP
————————— Web GP

Negative

0.9

o
o)

o
~

Wilson et al.
-------------- WordNet LP
———————— Web GP

Precision

o
o))

0.5

0.4

Recall 89

[Velikovich, et al., NAACL 2010]



Results

excellent, fabulous, beautiful, inspiring,
loveable, nicee, niice, cooool, coooool,
once in a life time, state-of-the-art, fail-safe operation,

just what you need, just what the doctor orderedé

bad, awful, terrible, dirty, $#%! face, $#%!ed up, shut
your $#%!ling mouth, run of the mill, out of touch,

over the hil @)

90 [Velikovich, et al., NAACL 2010]
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Variations
o

excellent, fabulous, beautiful, inspiring, .-
loveable, nicee, niice, cooool, coooool,
once in a life time, state-of-the-art, fail-safe operation,

just what you need, just wb.at the doctor orderedé

" Multi-word
expressions

bad, awful, terrible, dirty, $#%! face, $#%!ed up, shut
your $#%!ling mouth, run of the mill, out of touch,

over the hil @)

90 [Velikovich, et al., NAACL 2010]
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Problem Description

* Given an entity, assign human readable
descriptors to it

— Toyota is a car manufacturer, japanese
company, multinational company

— African countries such as Uganda and Angola
* Large scale, open domain (1000’s of classes)

* Applications
— web search, advertising, etc.

93
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Extraction Techniques

What Other Musicians Would Fans of the
Album Listen to:

Storytelling musicians come to mind. Musicians
such as Johnny Cash, and Woodie Guthrie.

What is Distinctive About this Release?:
Every song on the album has its own unique sound.
From the fast paced That Texas Girl to the acoustic ....

94

[van Durme and Pasca, AAAI 2008]

* Uses “<Class> such as <lnstance>"
patterns

 Extracts both class (musician) and
instance (Johnny Cash)



Extraction Techniques

il.\.l.hat Other Musicians Would Fans of the [Van Durme and Pasca’ AAAI 2008]
Album Listen to:

. . (¥4 b B/
Storytelling musicians come to mind. MusIicians * Uses “<Class> such as <Instance>

such as Johnny Cash, and Woodie Guthrie. patterns

What is Distinctive About this Release?: . .
Every song on the album has its own unique sound. ° Extracts bOth class (mUSICIan) and

From the fast paced That Texas Girl to the acoustic .... instance (Johnn)' Cash)

Extractions from HTML lists and
tables
* [Wang and Cohen, ICDM 2007]

= * WebTables [Cafarella et al.,VLDB
2008], 154 million HTML tables
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Extraction Techniques

il.\.l.hat Other Musicians Would Fans of the [Van Durme and Pasca,/ \/"\/ \I 2008]

Album Listen to:
Storytelling musicians come to mind. Musicians * Uses “<Class> such as <lnstance>"
such as Johnny Cash, and Woodie Guthrie. patterns
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s * WebTables [Cafarella et al.,VLDB
e gl v g 2008], 154 million HTML tables
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Graph Construction

Set |
Pattern Set 2 1\}?1:)111:3
Bob Dylan (0.95) :
—_ Billy Joel (0.72) «—
Johnny Cash (0.87)
Johnny Cash (0.73)

Billy Joel (0.82)
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Goal

Pattern

Set |

Bob Dylan (0.95)

Johnny Cash (0.87)

Billy Joel (0.82)

(Musicianw
N J

Set 2

Billy Joel (0.72)

Johnny Cash (0.73)

Table
Mining

_

Bob Dylan _
Can we infer
Johnny Cash that BOb
( Musicianj Dylan is also
\ a musician?
\_

BiInyJoeI
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Graph Propagation

0.95 Bob Dylan

Johnny Cash
e
LMusician, I .Oj

Billy Joel
(
LMusician, 1.0 j
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Graph Propagation
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Graph Propagation
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Graph Propagation
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Graph Propagation
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Evaluation Metric

Mean Reciprocal Rank

-

\_

MRR =

1

test-set|
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vetest-set
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rank,, (class(v))

~

)
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Extraction for Known Instances

Evaluation against WordNet Dataset (38 classes, 8910 instances)
0.6

B Patterns
. B Adsorption
B WebTables

O
U

=
R

[ 924K (clasg, instance)
pairs extracted from
| 100M web documents

74M (class, instance)

pairs extracted from
WebTables dataset

O
w

Mean Reciprocal Rank (MRR)
o
N

o
N

0.18 0.31 0.44 0.57 0.70

Recall
100



Extraction for Known Instances

Adsorptlon is able to assign better

class labels to more instances.
Evaluation against WordNet Dataset (38 classes, 89 |0 instances)

0.6
~ B Patterns
QZC . B Adsorption
~ 0.5 B WebTables
~ L.
= =
o2 Ry
Td -'
S 0.4 924K (class, instance) 74M (class, instance)
o pairs extracted from pairs extracted from
é 03 ! 100M web documents WebTables dataset
s s
> s

0.2

0.18 0.31 0.44 0.57 0.70

Recall
100



Extracted Pairs

Total classes: 908 I

Class

Some non-seed Instances found by
Adsorption

Scientific Journals

Journal of Physics, Nature, Structural and Molecular
Biology, Sciences Sociales et sante, Kidney and Blood
Pressure Research, American Journal of Physiology-Cell
Physiology, ...

NFL Players

Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron
Dixon, Rodney Hannan, ...

Book Publishers

Small Night Shade Books, House of Ansari Press,
Highwater Books, Distributed Art Publishers, Cooper
Canyon Press, ...
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Extracted Pairs

Total classes: 908 I

Class Some non-seed Instances found by
Adsorption

Scientific Journals | Journal of Physics, Nature, Structural and Molecular
Biology, Sciences Sociales et sante, Kidney and Blood

p
Graph-based methods can easily handle large
number of classes
N
Dixon, Rodney Hannan, .
Book Publishers Small Night Shade Books, House of Ansari Press,

Highwater Books, Distributed Art Publishers, Cooper
Canyon Press, ...
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Results

Data available @ http://www.talukdar.net/datasets/class_inst/

TextRunner Graph, 170 WordNet Classes
0.35

B LP-ZGL [ Adsorption MAD

©
w

0.25

Mean Reciprocal Rank (MRR)
o
N

0.15

170 x 2 170 x 10

Amounlto?f Supervision
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Results

Data available @ http://www.talukdar.net/datasets/class_inst

Freebase-2 Graph, 192 WordNet Classes
0.39

B LP-ZGL [ Adsorption | MAD

o
w
U
Ui

0.32

0.285

Mean Reciprocal Rank (MRR)

0.25
192 x 2 192 x 10

Amount of Supervision
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Solution (1)

&

“Billy Joel” have albumes.

 Both “Johnny Cash” and :

)

e —
G
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Solution (I)

&

“Billy Joel” have albumes.

' Both “Johnny Cash” and :

J

e —
G

Isaac
Newton

Johnny Cash

Billy Joel

(

the constraint (bad)

* Graph is no longer bi-partite (not necessarily bad)
* Can lead to cliques of size of humber of instances in

\

J
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Solution (ll)

&

“Billy Joel” have albumes.

 Both “Johnny Cash” and :

)
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[Talukdar & Periera, ACL 2010]



Solution (ll)

(

&

Both “Johnny Cash” and :

“Billy Joel” have albums.

Have Album

A N—
—

106

Isaac
Newton

Johnny Cash

Billy Joel

[Talukdar & Periera, ACL 2010]



Solution (ll)

(

&

Both “Johnny Cash” and :

“Billy Joel” have albums.

‘
7
@,\

106

Isaac
Newton

Johnny Cash

Billy Joel

[Talukdar & Periera, ACL 2010]



Solution (ll)

-

&

Both “Johnny Cash” and :

“Billy Joel” have albums.

‘
7
@,\

Isaac
Newton

Johnny Cash

Billy Joel

[ Semantic Constraints may be easily encoded J

106

[Talukdar & Periera, ACL 2010]



Results with Semantic Constraints

170 WordNet Classes, 10 Seeds per Class, using Adsorption

0.45
B TextRunner Graph
B YAGO Graph
TextRunner + YAGO Graph

_~
24

£ 0413
3
o’
-
c
<
24

8 0375
2
o
3
107 o
c

& 0.338
3

©
w

[Talukdar & Periera, ACL 2010]



Results with Semantic Constraints

170 WordNet Classes, 10 Seeds per Class, using Adsorption

0.45 - |
B TextRunner Graph With Sem.ant|c
B YAGO Graph Constraints
TextRunner + YAGO Graph o

o L4
4 .
£ 0413 "
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L
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v
4
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o
o
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c
S 0338
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©
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[Talukdar & Periera, ACL 2010]



Results with Semantic Constraints

170 WordNet Classes, 10 Seeds per Class, using Adsorption
0.45

B TextRunner Graph With Sem.antic
B YAGO Graph Cc:nstralnts
TextRunner + YAGO Graph o
0413 ‘¢
d ™

Additional semantic
constraints help
0.375 improve performance

significantly.

107

0.338

Mean Reciprocal Rank (MRR)

0.3

[Talukdar & Periera, ACL 2010]



Big Picture
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\ Use case 1: Transductive Classification ]

\
i Use case 2: Training Better Inductive Model j
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Graph Construction ()

(“when do you book plane tickets?”)

(“do you read a book on the plane?’j
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(“when do you book plane tickets?”)
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Graph Construction ()

WRB VBP PRP VB NN NINS

(“when do you book plane tickets?”)

l
1

(“do you read a book on the plane?’j

VBP PRP VB DT NN IN DT NN



Graph Construction (ll)

can you book a day room at hilton hawaiian village ?
what was the book that has no letter e ?
how much does it cost to book a band ?

how to get a book agent !

112



Graph Construction (ll)

can you book a day room at hilton hawaiian village ?

what was the book that has no letter e ?

how much does it cost to book a band ?

how to get a book agent !

112



Graph Construction (ll)

you book a

the book that

to book a

a book agent

112



Graph Construction (ll)

o
] .| the book that
you book a
o
a book agent
o

to book a

112



Graph Construction (ll)
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Graph Construction (lll)
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Graph Construction - Features

how much does it cost to book a band ?

Trigram + Context

cost to book a band

Left Context cost to

Right Context a band
Center VWord book
Trigram - Center VWord to  a

Left Word + Right Context to  aband
Left Context + RightWord |[costto  a

Suffix none
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Approach (lll)
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Approach (V)

|. Train a CRF on labeled data
2. While not converged do:
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Corpora

* Source Domain (labeled): Wall Street Journal
(WS)) section of the Penn Treebank.

* Target Domain:
® QuestionBank: 4000 labeled sentences

® Penn BioTreebank: 1061 labeled sentences
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Graph Construction: Question Bank

|0 million questions collected
from anonymized Internet
Search Queries
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Graph Construction: Bio

Labels are not used
during graph
construction

PMI
Statistics

A 4

100,000 sentences chosen
by searching MEDLINE
(Blitzer et al. 2006)

Unlabeled Data

Similarity Graph
Construction
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Baseline (Supervised)

Not the same
_as features used
" using graph
construction

® Features: word identity, suffixes, prefixes &
special character detectors (dashes, digits,
etc.).

® Achieves 97.17% accuracy on WS§]
development set.
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Results

Questions Bio
Baseline 83.8 86.2
Self-training 84.0 87.1
Semi-supervised 86.8 87.6

CRF
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Analysis
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Analysis

Sparse
Graph

Questions

Bio

percentage of unlabeled trigrams not
connected to and any labeled trigram

12.4

46.8

average path length between an unlabeled
trigram and its nearest labeled trigram

%24

224
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Analysis

® Pros
® |nductive

® Produces a CRF (standard CRF inference
infrastructure may be used)

® |ssues
® Graph construction

® Graph is not integrated with CRF training
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Big Picture
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\ Use case 1: Transductive Classification ]

\
i Use case 2: Training Better Inductive Model j
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Qutline

® Motivation

o Graph Construction r Text Categorization
Sentiment Analysis

® |nhference Methods Class Instance Acquisition
POS Tagging
Das & Petrov, ACL 201 |
® Applications L Semantic Parsing

® Conclusion & Future Work
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Motivation

* Supervised POS taggers for English have accuracies
in the high 90’s for most domains
* By comparison taggers in other languages are not as
accurate

* Performance ranges from between 60 - 80%

Transfer
i ) Knowledge ( A
Hodelin Model in
resource-rich
language (e.g., resource-poor
English) language
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Cross-Lingual Projection
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Cross-Lingual Projection

96% Accuracy l

DET NOUN ADP NOUN VERB ADJ .
The food at Google is good .

\ 1

Das Essen ist qgut bei Google .

Automatic alignments from translation data
(available for more than 50 languages)
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Cross-Lingual Projection

DET NOUN ADP NOUN VERB ADJ
The food at Google is good

VL

Das Essen i gut bei Google '
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Cross-Lingual Projection

NOUN DET
food The
Essen Das
ADJ] ISt
good gut
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Cross-Lingual Projection
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Cross-Lingual Projection
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Cross-Lingual Projection Results

Danish | Dutch | German | Greek | Italian [Portuguese | Spanish | Swedish | Average
et | 69.1 | 651 | 813 | 718 | 681 | 784 | 802 | 70.1 | 73.0
136 Feature-HMM [Berg-Kirkpatrick, NAACL 2010]




Cross-Lingual Projection Results

Danish | Dutch | German | Greek | Italian [Portuguese | Spanish | Swedish | Average

Feature-
HMM 69.1 65.1 81.3 71.8 | 68.1 78.4 80.2 70.1 73.0

Direct
Projection

73.6 | 77.0 | 83.2 | 79.3 | 79.7 | 82.6 80.1 | 74.7 | 78.8

136 Feature-HMM [Berg-Kirkpatrick, NAACL 2010]
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Results

Danish | Dutch | German | Greek | ltalian | Portugese | Spanish | Swedish | Average

Feature-
HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0
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Projection

Graph-
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Problem Description

® Extract shallow semantic structure: Frames and
Roles
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Problem Description

® Predicate identification
® Most approaches assume this is given
® Frame identification

® Argument identification

|46
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Sparse label data

® | abeled data has only about 9,263 labeled
predicates (targets)

® English on the other hand has a lot more
potential predicates (~65,000 in newswire)
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Sparse label data

® | abeled data has only about 9,263 labeled
predicates (targets)

® English on the other hand has a lot more
potential predicates (~65,000 in newswire)

® Construct a graph with potential predicates as
vertices

® Expand the lexicon by using graph-based SSL
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Graph Propagation (ll)
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Graph Propagation (1V)
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® When input data itself is a graph (relational data)

® or, when the data is expected to lie on a manifold

® MAD, Quadratic Criteria (QC)

® when labels are not mutually exclusive

e MADDL: when label similarities are known

® Measure Propagation (MP)

e for probabilistic interpretation

® Manifold Regularization

® for generalization to unseen data (induction)
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Graph-based SSL: Summary

® Provide flexible representation

® for both IID and relational data

® Graph construction can be key

® Scalable: Node Reordering and MapReduce
® Can handle labeled as well as unlabeled data
® Can handle multi class, multi label settings

® Effective in practice
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Open Challenges

® Graph-based SSL for Structured Prediction

® Algorithms: Combining Inductive and graph-based methods

® Applications: Constituency and dependency parsing, Coreference

® Scalable graph construction, especially with
multi-modal data

® Extensions with other loss functions, sparsity, etc.

® Using side information
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