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Examples:
Decision Trees

  Support Vector Machine (SVM)
  Maximum Entropy (MaxEnt)
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Examples:
Self-Training
Co-Training
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With Unlabeled DataWithout Unlabeled Data

Why SSL?

How can unlabeled data be helpful?

Example from [Belkin et al., JMLR 2006]

Labeled 
Instances

Decision
Boundary

More accurate 
decision boundary 
in the presence of 
unlabeled instances

Unlabeled
Instances
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Inductive vs Transductive

SVM, 
Maximum Entropy X

Manifold 
Regularization

Label Propagation 
(LP), MAD, MP, ...

Supervised
(Labeled)

Semi-supervised
(Labeled + Unlabeled)

Inductive
(Generalize to
Unseen Data)

Transductive
(Doesn’t Generalize to

Unseen Data)

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf

Most Graph SSL algorithms are non-parametric 
(i.e., # parameters grows with data size)

5

Focus of this 
tutorial

http://olivier.chapelle.cc/ssl-book/discussion.pdf
http://olivier.chapelle.cc/ssl-book/discussion.pdf
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Why Graph-based SSL?

• Some datasets are naturally represented by a graph

• web, citation network, social network, ...

• Uniform representation for heterogeneous data

• Easily parallelizable, scalable to large data

• Effective in practice
Graph SSL

Supervised

Non-Graph SSL

Text Classification
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Graph-based SSL

• Two stages
• Graph construction (if not already present)
• Label Inference

Smoothness Assumption 
If two instances are similar 

according to the graph, then 
output labels should be similar
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Graph Construction

• Neighborhood Methods

• k-NN Graph Construction (k-NNG)

• e-Neighborhood Method

• Metric Learning

• Other approaches
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Issues with k-NNG

• Results in irregular graphs
• some nodes may end up with 

higher degree than other nodes

Node of degree 4 in
the k-NNG (k = 1)

13

• Not scalable (quadratic)
• Results in an asymmetric graph
• b is the closest neighbor of a, but not 

the other way

a b c
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Issues with e-Neighborhood

• Not scalable

• Sensitive to value of e : not invariant to scaling 

• Fragmented Graph: disconnected components

Figure from [Jebara et al., ICML 2009]

e-NeighborhoodData

Disconnected
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Graph Construction using 
Metric Learning

• Supervised Metric Learning

• ITML [Kulis et al., ICML 2007]

• LMNN [Weinberger and Saul, JMLR 2009]

• Semi-supervised Metric Learning

• IDML [Dhillon et al., UPenn TR 2010]

xi xj
wij ∝ exp(−DA(xi, xj))

Estimated using 
Mahalanobis metric 
learning algorithms

DA(xi, xj) = (xi − xj)
TA(xi − xj)
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[Dhillon et al., UPenn TR 2010]

Graph constructed 
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Benefits of Metric Learning for
Graph Construction

Careful graph construction is critical!
[Dhillon et al., UPenn TR 2010]

Graph constructed 
using supervised 
metric learning

0

0.125

0.25

0.375

0.5

Amazon Newsgroups Reuters Enron A Text

Original RP PCA ITML IDML

Er
ro

r

100 seed and1400 test instances, all inferences using LP

Graph constructed using 
semi-supervised 
metric learning
[Dhillon et al., 2010]
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Other Graph Construction 
Approaches

• Local Reconstruction

• Linear Neighborhood [Wang and Zhang, ICML 2005]

• Regular Graph: b-matching [Jebara et al., ICML 2008]

• Fitting Graph to Vector Data [Daitch et al., ICML 2009]

• Graph Kernels

• [Zhu et al., NIPS 2005]
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Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Label Propagation
- Modified Adsorption
- Measure Propagation
- Sparse Label Propagation
- Manifold Regularization
- Spectral Graph Transduction
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• Laplacian (un-normalized) of a graph:
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 3    -1   -2    0
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-2    -3    6   -1
 0     0   -1     1  
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L = D −W,where Dii =
�
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Graph Laplacian (contd.)
• L is positive semi-definite (assuming non-negative weights)

• Smoothness of prediction f over the graph in 
terms of the Laplacian:

1
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Lg = λg

gTLg = λgT g

gTLg = λ

Relationship between Eigenvalues of 
the Laplacian and Smoothness

21

Eigenvalue of LEigenvector of L

= 1, as eigenvectors 
are are orthonormal

If an eigenvector is used to 
classify nodes, then the 

corresponding eigenvalue gives 
the measure of non-smoothness

Measure of 
Non-Smoothness
(previous slide)



Spectrum of the Graph Laplacian

Figure from [Zhu et al., 2005]

Number of
connected

components = 
Number of 0 
eigenvalues

Constant within
component

Higher Eigenvalue,
Irregular Eigenvector,

Less smoothness
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Notations
Seed Scores

Estimated 
Scores

Label 
Regularization

Ŷv,l : score of estimated label l on node v 

Yv,l : score of seed label l on node v 

Rv,l : regularization target for label l on node v 

S : seed node indicator (diagonal matrix) 

v

Wuv : weight of edge (u, v) in the graph

24



LP-ZGL [Zhu et al., ICML 2003]

argmin
Ŷ

m∑

l=1

Wuv(Ŷul − Ŷvl)
2

Yul = Ŷul, ∀Suu = 1such that

=

m∑

l=1

Ŷ
T
l LŶl

Graph
Laplacian
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Yul = Ŷul, ∀Suu = 1such that

Smooth

=

m∑

l=1

Ŷ
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LP-ZGL [Zhu et al., ICML 2003]

argmin
Ŷ

m∑
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Wuv(Ŷul − Ŷvl)
2

Yul = Ŷul, ∀Suu = 1such that

Smooth

Match Seeds 
(hard)

• Smoothness

•  two nodes connected by 
an edge with high weight 
should be assigned similar 
labels

• Solution satisfies harmonic 
property

=

m∑

l=1

Ŷ
T
l LŶl

Graph
Laplacian
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Random Walk View
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Random Walk View

UV

what next? Starting node
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• Continue walk with probability

• Assign V’s seed label to U with probability

• Abandon random walk with probability 
• assign U a dummy label 

p
cont

v

p
inj
v

p
abnd
v

Random Walk View

UV

what next? Starting node
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Discounting Nodes

• Certain nodes can be unreliable (e.g., high degree nodes)

• do not allow propagation/walk through them

• Solution: increase abandon probability on such 
nodes:

p
abnd
v ∝ degree(v)

29



Redefining Matrices

W
′

uv
= pcont

u
×Wuv

Suu =

√

pinju

Ru! = pabndu
, and 0 for non-dummy labels

Dummy	  Label

New	  Edge
Weight

30
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[Talukdar and Crammer, ECML 2009]
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Modified Adsorption (MAD)
[Talukdar and Crammer, ECML 2009]

argmin
Ŷ

m+1�

l=1

�
�SŶ l − SY l�2 + µ1

�

u,v

Muv(Ŷ ul − Ŷ vl)
2 + µ2�Ŷ l −Rl�2

�

• m labels, +1 dummy label

• M = W� +W is the symmetrized weight matrix

• Ŷ vl: weight of label l on node v

• Y vl: seed weight for label l on node v

• S: diagonal matrix, nonzero for seed nodes

• Rvl: regularization target for label l on node v

Seed Scores

Estimated
Scores

Label Priorsv

′′
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�SŶ l − SY l�2 + µ1

�

u,v
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�SŶ l − SY l�2 + µ1

�

u,v
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[Talukdar and Crammer, ECML 2009]
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�SŶ l − SY l�2 + µ1

�

u,v

Muv(Ŷ ul − Ŷ vl)
2 + µ2�Ŷ l −Rl�2

�

• m labels, +1 dummy label

• M = W� +W is the symmetrized weight matrix

• Ŷ vl: weight of label l on node v

• Y vl: seed weight for label l on node v

• S: diagonal matrix, nonzero for seed nodes

• Rvl: regularization target for label l on node v

Match Seeds (soft) Smooth
Match Priors
(Regularizer)

Seed Scores

Estimated
Scores

Label Priorsv
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Modified Adsorption (MAD)
[Talukdar and Crammer, ECML 2009]

argmin
Ŷ

m+1�

l=1

�
�SŶ l − SY l�2 + µ1

�

u,v

Muv(Ŷ ul − Ŷ vl)
2 + µ2�Ŷ l −Rl�2

�

• m labels, +1 dummy label

• M = W� +W is the symmetrized weight matrix

• Ŷ vl: weight of label l on node v

• Y vl: seed weight for label l on node v

• S: diagonal matrix, nonzero for seed nodes

• Rvl: regularization target for label l on node v

Match Seeds (soft) Smooth
Match Priors
(Regularizer)

Seed Scores

Estimated
Scores

Label Priorsv

MAD has extra regularization compared to LP-ZGL 
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]

′′for none-of-the-above label
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Modified Adsorption (MAD)
[Talukdar and Crammer, ECML 2009]

argmin
Ŷ

m+1�

l=1

�
�SŶ l − SY l�2 + µ1

�

u,v

Muv(Ŷ ul − Ŷ vl)
2 + µ2�Ŷ l −Rl�2

�

• m labels, +1 dummy label

• M = W� +W is the symmetrized weight matrix

• Ŷ vl: weight of label l on node v

• Y vl: seed weight for label l on node v

• S: diagonal matrix, nonzero for seed nodes

• Rvl: regularization target for label l on node v

Match Seeds (soft) Smooth
Match Priors
(Regularizer)

Seed Scores

Estimated
Scores

Label Priorsv

MAD has extra regularization compared to LP-ZGL 
[Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]

′′for none-of-the-above label

MAD’s Objective 
is Convex
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• Can be solved using matrix inversion (like in LP)

• but matrix inversion is expensive
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Solving MAD Objective

• Can be solved using matrix inversion (like in LP)

• but matrix inversion is expensive

• Instead solved exactly using a system of linear 
equations (Ax = b)

• solved using Jacobi iterations

• results in iterative updates

• guaranteed convergence

• see [Bengio et al., 2006] and                                          
[Talukdar and Crammer, ECML 2009] for details
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Solving MAD using Iterative Updates

Inputs Y ,R : |V |× (|L|+ 1), W : |V |× |V |, S : |V |× |V | diagonal
Ŷ ← Y
M = W +W�

Zv ← Svv + µ1
�

u �=v Mvu + µ2 ∀v ∈ V
repeat

for all v ∈ V do
Ŷ v ← 1

Zv

�
(SY )v + µ1Mv·Ŷ + µ2Rv

�

end for
until convergence

′′

Seed Prior

0.75

0.05

0.60

Current label 
estimate on ba b

c

v

33



Solving MAD using Iterative Updates

Inputs Y ,R : |V |× (|L|+ 1), W : |V |× |V |, S : |V |× |V | diagonal
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• Importance of a node can be discounted
• Easily Parallelizable: Scalable (more later)



When is MAD most effective?
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MAD is particularly effective in denser graphs, where 
there is greater need for regularization.
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Extension to Dependent Labels
Labels are not always mutually exclusive

1.0 1.0

Label Similarity in Sentiment Classification

35

Modified Adsorption with Dependent Labels 
(MADDL) [Talukdar and Crammer, ECML 2009]

• Can take label similarities into account
• Convex Objective
• Efficient iterative/parallelizable updates as in MAD
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argmin
{pi}

l�

i=1

DKL(ri||pi) + µ

�

i,j

wijDKL(pi||pj)− ν

n�

i=1

H(pi)

Measure Propagation (MP)
[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 2011]

CKL

s.t.
�

y

pi(y) = 1, pi(y) ≥ 0, ∀y, i
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Entropic Regularizer

KL Divergence
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pi(y) log
pi(y)

pj(y)

Entropy
H(pi) = −

�

y

pi(y) log pi(y)

Seed and estimated label 
distributions (normalized) 

on node i

CKL is convex (with non-negative edge weights and hyper-parameters)

MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]

Normalization Constraint

CKL

s.t.
�

y

pi(y) = 1, pi(y) ≥ 0, ∀y, i
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Solving MP Objective

• For ease of optimization, reformulate MP objective:

arg min
{pi,qi}

l�

i=1

DKL(ri||qi) + µ

�

i,j

w
�

ijDKL(pi||qj)− ν

n�

i=1

H(pi)

CMP
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Solving MP Objective

• For ease of optimization, reformulate MP objective:

arg min
{pi,qi}

l�

i=1

DKL(ri||qi) + µ

�

i,j

w
�

ijDKL(pi||qj)− ν

n�

i=1

H(pi)

   w
�

ij = wij + α× δ(i, j)New probability 
measure, one for each 

vertex, similar to pi

CMP

Encourages agreement 
between pi and qi 

   

CMP is also convex
(with non-negative edge weights and hyper-parameters)  

CMP can be solved using Alternating Minimization (AM)
38
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Q2

Alternating Minimization

Q0

Q1

P1
P2P3

CMP satisfies the necessary conditions for AM to 
converge [Subramanya and Bilmes, JMLR 2011]
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Performance of SSL Algorithms

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets
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Performance of SSL Algorithms

Comparison of accuracies for different number of labeled
samples across COIL (6 classes) and OPT (10 classes) datasets

Graph SSL can be effective when the data satisfies manifold 
assumption. More results and discussion in Chapter 21 of 

the SSL Book (Chapelle et al.)
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Background: Factor Graphs
[Kschischang et al., 2001]

Factor Graph
• bipartite graph
• variable nodes (e.g., label distribution on a node)
• factor nodes: fitness function over variable assignment

Distribution over all variables’ values

Variable Nodes (V)

Factor Nodes (F)

variables connected 
to factor f43



Factor Graph Interpretation of 
Graph SSL [Zhu et al., ICML 2003] [Das and Smith, NAACL 2012]

min Edge Smoothness 
Loss

Regularization 
Loss + +Seed Matching 

Loss (if any)

3-term Graph SSL Objective (common to many algorithms)
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3-term Graph SSL Objective (common to many algorithms)

q1 q2
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Smoothness 

Factor

Seed Matching
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Factor Graph Interpretation
[Zhu et al., ICML 2003][Das and Smith, NAACL 2012]

r1 r2 

r3 

r4 

q1 q2 

q4 

q3 

q9264 

q9265 

q9266 

q9267 q9268 q9269 q9270 1. Factor encouraging 
agreement on seed 

labels

2. Smoothness
Factor

3. Unary factor for 
regularization
logψt(qt)
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Label Propagation with Sparsity
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Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

logψt(qt) =

logψt(qt) =

Lasso (Tibshirani, 1996) 

Elitist Lasso (Kowalski and Torrésani, 2009)

For more details, see [Das and Smith, NAACL 2012]
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Manifold Regularization
[Belkin et al., JMLR 2006]

f∗ = argmin
f

1

l

l�

i=1

V (yi, f(xi)) + β fTLf + γ||f ||2K

48
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Manifold Regularization
[Belkin et al., JMLR 2006]

Loss Function
(e.g., soft margin)

Laplacian of graph  
over labeled and 
unlabeled data

Trains an inductive classifier which can generalize 
to unseen instances 

Training Data
Loss

Smoothness 
Regularizer

Regularizer
(e.g., L2)

f∗ = argmin
f

1

l

l�

i=1

V (yi, f(xi)) + β fTLf + γ||f ||2K
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Other Graph-based SSL Methods

• SSL on Directed Graphs

• [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]

• Learning with dissimilarity edges

• [Goldberg et al., AISTATS 2007]

• Spectral Graph Transduction [Joachims, ICML 2003]

• Graph Transduction using Alternating Minimization

• [Wang et al., ICML 2008]

• Graph as regularizer for Multi-Layered Perceptron

• [Karlen et al., ICML 2008], [Malkin et al., Interspeech 2009]
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More (Unlabeled) Data is Better Data

Graph with 
120m 
vertices

 Challenges with large unlabeled data:

• Constructing graph from large data
• Scalable inference over large graphs

[Subramanya & Bilmes, JMLR 2011]51
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Scalability Issues (I)
Graph Construction
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• Brute force (exact) k-NNG too expensive 
(quadratic)

Scalability Issues (I)
Graph Construction

53



• Brute force (exact) k-NNG too expensive 
(quadratic)

• Approximate nearest neighbor using kd-
tree [Friedman et al., 1977, also see http://

www.cs.umd.edu/˜mount/]

Scalability Issues (I)
Graph Construction

53
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• Sub-sample the data

• Construct graph over a subset of a unlabeled 
data [Delalleau et al., AISTATS 2005]

• Sparse Grids [Garcke & Griebel, KDD 2001]

Scalability Issues (II)
Label Inference
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• Sub-sample the data

• Construct graph over a subset of a unlabeled 
data [Delalleau et al., AISTATS 2005]

• Sparse Grids [Garcke & Griebel, KDD 2001]

• How about using more computation? (next section)

• Symmetric multi-processor (SMP)

• Distributed Computer

Scalability Issues (II)
Label Inference
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• Scalability
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• Conclusion & Future Work

- Scalability Issues
- Node reordering
      [Subramanya & Bilmes, JMLR 2011;
       Bilmes & Subramanya, 2011]

- MapReduce Parallelization
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Label Update using Message Passing
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v
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Speed-up on SMP

[Subramanya & Bilmes, JMLR, 2011]

• Graph with 1.4M nodes
• SMP with 16 cores and 
128GB of RAM
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Speed-up on SMP
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[Subramanya & Bilmes, JMLR, 2011]
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Speed-up on SMP

Ratio of time 
spent when using 
1 processor to 

time spent using n 
processors

Cache miss?

[Subramanya & Bilmes, JMLR, 2011]

• Graph with 1.4M nodes
• SMP with 16 cores and 
128GB of RAM
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Node Reordering Algorithm

Input: Graph G = (V, E)

Result: Node ordered graph

1. Select an arbitrary node v

2. while unselected nodes remain do

2.1. select an unselected node v` from among the 
neighbors’ neighbors of v that has maximum 
overlap with v` neighbors

2.2. mark v` as selected

2.3. set v to v`

[Subramanya & Bilmes, JMLR, 2011]59



Node Reordering Algorithm

Input: Graph G = (V, E)

Result: Node ordered graph

1. Select an arbitrary node v

2. while unselected nodes remain do

2.1. select an unselected node v` from among the 
neighbors’ neighbors of v that has maximum 
overlap with v` neighbors

2.2. mark v` as selected

2.3. set v to v`

Exhaustive 
for sparse 

(e.g., k-NN) 
graphs

[Subramanya & Bilmes, JMLR, 2011]59
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Speed-up on SMP after Node Ordering

[Subramanya & Bilmes, JMLR, 2011]61



Distributed Processing

• Maximize overlap between consecutive nodes 
within the same machine

• Minimize overlap across machines (reduce inter 
machine communication)
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Distributed Processing

[Bilmes & Subramanya, 2011]63
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Distributed Processing Results

[Bilmes & Subramanya, 2011]65
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Code in Junto Label Propagation Toolkit

(includes Hadoop-based implementation)
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Problem Description & Motivation

• Given a document (e.g., web page, news 
article), assign it to a fixed number of 
semantic categories (e.g., sports, politics, 
entertainment)

• Multi-label problem

• Training supervised models requires large 
amounts of labeled data [Dumais et al., 1998]
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Corpora

•Reuters [Lewis, et al., 1978]

• Newswire

• About 20K document with 135 categories. Use 
top 10 categories (e.g., “earnings”, “acquistions”, 
“wheat”, “interest”) and label the remaining as 
“other”

•WebKB [Bekkerman, et al., 2003]

• 8K webpages from 4 academic domains

• Categories include “course”, “department”, 
“faculty” and “project”
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Spectral 
Graph 

Transduction 
(SGT) 

[Joachims 2003]

Label Propagation 
[Zhu & Ghahramani 2002]

Measure Propagation 
[Subramanya & Bilmes 2008]

Modified Adsorption
[Talukdar & Crammer 2009]

74



Results on WebKB

[Subramanya & Bilmes, EMNLP 2008]75



Results on WebKB
Modified Adsorption (MAD) 

[Talukdar & Crammer 2009]

[Subramanya & Bilmes, EMNLP 2008]75



Results on WebKB
Modified Adsorption (MAD) 

[Talukdar & Crammer 2009]

• More labeled data => Better Performance
• Unnormalized distributions (scores) more 
suitable for multi-label problems (MAD 
outperforms other approaches)

[Subramanya & Bilmes, EMNLP 2008]75
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Problem Description

• Given a document either

• classify it as expressing a positive or 
negative sentiment or

• assign a star rating

• Similar to text categorization

• Can be solved using standard machine 
learning approaches [Pang, Lee & Vaidyanathan, EMNLP 2002]
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Problem Description

• fortunately, they managed to do it in an interesting 
and funny way.

• he is one of the most exciting martial artists on the 
big screen.

• the romance was enchanting.

• A woman in peril.  A confrontation.  An explosion. 
The end. Yawn. Yawn. Yawn.

• don’t go see this movie

Movie review dataset [Pang et al. EMNLP 2002] 79
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Polarity Lexicons (I)

• Large lists of phrases that encode the polarity 
(positive or negative) of each phrase

• Positive polarity:  “enjoyable”, “breathtakingly”, 
“once in a life time”

• Negative polarity: “bad”, “humorless”, 
“unbearable”, “out of touch”, “bumps in the 
road”  

• Best results obtained by combining with machine 
learning approaches [Wilson et al., HLT-EMNLP 05; Blair-
Goldensohn et al. 08; Choi & Cardie EMNLP 09]
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Polarity Lexicons (II)

• Common strategy: start with two small seed sets 

• P: positive phrases, e.g., “great” “fantastic”

• N: negative phrases, e.g., “awful”, “dreadful”

• Grow lexicons with graph propagation algorithms
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• N: negative phrases, e.g., “awful”, “dreadful”

• Grow lexicons with graph propagation algorithms

great

love it

good

nice

excellent

awful

fantastic

painful

bad

irritatingugly

dreadful

pretty
slightly off

...

81



Graph Construction (I)

• WordNet [Hu & Liu, KDD 04; Kim & Hovy,  ICCL 04; Blair-
Goldensohn 08; Rao & Ravichandran EACL 09]

• Defines synonyms, antonyms, hypernyms, etc.

• Make edges between synonyms

• Enforce constraints between antonyms

• Issues

• coverage

• hard to find resources for all languages
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Graph Construction (II)

• Use web data!

• All n-grams (phrases) up to length 10 from 4 
billion web pages 

• Pruned down to 20 million candidate 
phrases

• Feature vector obtained by aggregating 
words that occurred in local context

[Velikovich, et al., NAACL 2010]83
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Key observation: sentiment phrases are those that have 
short highly weighted paths to seed nodes

[Velikovich, et al., NAACL 2010]87



Results

Lexicon Phrases Positive Negative

Wilson et al. 2005 7,618 2,718 4,900

WordNet LP 
[Blair-Goldensohn et al. 07]

12,310 5,705 6,605

Web GP 
[Velikovich et al. 2010]

178,104 90,337 87,767

Size of the output lexicon
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Resulting lexicon is 
larger in size and has 
much better precision

[Velikovich, et al., NAACL 2010]89



bad, awful, terrible, dirty, $#%! face, $#%!ed up, shut 
your $#%!ing mouth, run of the mill, out of touch, 
over the hill
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your $#%!ing mouth, run of the mill, out of touch, 
over the hill

Results
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excellent, fabulous, beautiful, inspiring,
loveable, nicee, niice, cooool, coooool, 
once in a life time, state-of-the-art, fail-safe operation, 
just what you need, just what the doctor ordered

[Velikovich, et al., NAACL 2010]
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Multi-word 
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Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work

- Text Categorization
- Sentiment Analysis
- Class Instance Acquisition

[Talukdar et al., EMNLP 2008]

- POS Tagging
- MultiLingual POS Tagging
- Semantic Parsing
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Problem Description

• Given an entity, assign human readable 
descriptors to it
– Toyota is a car manufacturer, japanese 
company, multinational company

– African countries such as Uganda and Angola

• Large scale, open domain (1000’s of classes)

• Applications
– web search,  advertising, etc.
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Extraction Techniques
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Extraction Techniques
....
What Other Musicians Would Fans of the 
Album Listen to:
Storytelling musicians come to mind. Musicians 
such as Johnny Cash, and Woodie Guthrie.

What is Distinctive About this Release?:
Every song on the album has its own unique sound. 
From the fast paced That Texas Girl to the acoustic ....

 [van Durme and Pasca, AAAI 2008]
• Uses “<Class> such as <Instance>” 
patterns

• Extracts both class (musician) and 
instance (Johnny Cash)
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Extraction Techniques
....
What Other Musicians Would Fans of the 
Album Listen to:
Storytelling musicians come to mind. Musicians 
such as Johnny Cash, and Woodie Guthrie.

What is Distinctive About this Release?:
Every song on the album has its own unique sound. 
From the fast paced That Texas Girl to the acoustic ....

 [van Durme and Pasca, AAAI 2008]
• Uses “<Class> such as <Instance>” 
patterns

• Extracts both class (musician) and 
instance (Johnny Cash)

Extractions from HTML lists and 
tables

• [Wang and Cohen, ICDM 2007]

•  WebTables [Cafarella et al., VLDB 
2008], 154 million HTML tables

Pattern-based methods are usually tuned for          
high-precision, resulting in low coverage

Can we combine extractions from all methods         
(and sources) to improve coverage? 
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Graph Construction

Set 1

Set 2

Bob Dylan

Johnny Cash

Billy Joel

0.95

0.87

0.73

0.72
0.82

• Bi-partite graph (not a k-NNG)
• “Set” nodes encourage members of the set to have 
similar labels
• Natural way to represent extractions from many 
sources and methods
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Can we infer 
that Bob 

Dylan is also 
a musician?
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Graph Propagation
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Easily extendible to multiple 
seeds (classes) for each node
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Patterns
Adsorption
WebTables

74M (class, instance) 
pairs extracted from 
WebTables dataset

924K (class, instance) 
pairs extracted from 
100M web documents

Adsorption is able to assign better 
class labels to more instances.

100



Extracted Pairs

Class Some non-seed Instances found by 
Adsorption

Scientific Journals Journal of Physics, Nature, Structural and Molecular 
Biology, Sciences Sociales et sante, Kidney and Blood 
Pressure Research, American Journal of Physiology-Cell 
Physiology, …

NFL Players Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron 
Dixon, Rodney Hannan, …

Book Publishers Small Night Shade Books, House of Ansari Press, 
Highwater Books, Distributed Art Publishers, Cooper 
Canyon Press, …

Total classes: 9081
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Extracted Pairs

Class Some non-seed Instances found by 
Adsorption

Scientific Journals Journal of Physics, Nature, Structural and Molecular 
Biology, Sciences Sociales et sante, Kidney and Blood 
Pressure Research, American Journal of Physiology-Cell 
Physiology, …

NFL Players Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron 
Dixon, Rodney Hannan, …

Book Publishers Small Night Shade Books, House of Ansari Press, 
Highwater Books, Distributed Art Publishers, Cooper 
Canyon Press, …

Total classes: 9081

Graph-based methods can easily handle large 
number of classes

101



Results

0.15

0.2

0.25

0.3

0.35

170 x 2 170 x 10

TextRunner Graph, 170 WordNet Classes
M

e
a
n

 R
e

ci
p

ro
ca

l 
R

a
n

k
 (

M
R

R
)

Amount of Supervision

LP-ZGL Adsorption MAD

Graph with
175k nodes
529k edges

Data available @ http://www.talukdar.net/datasets/class_inst/

102

http://www.talukdar.net/datasets/class_inst/
http://www.talukdar.net/datasets/class_inst/


Results

0.25

0.285

0.32

0.355

0.39

192 x 2 192 x 10

Freebase-2 Graph, 192 WordNet Classes

M
e

a
n

 R
e

ci
p

ro
ca

l 
R

a
n

k
 (

M
R

R
)

Amount of Supervision

LP-ZGL Adsorption MAD

Graph with
303k nodes
2.3m edges 

Data available @ http://www.talukdar.net/datasets/class_inst/

103

http://www.talukdar.net/datasets/class_inst/
http://www.talukdar.net/datasets/class_inst/


Semantic Constraints
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Semantic Constraints

Set 1

Set 2

Isaac 
Newton

Johnny Cash

Billy Joel

Suppose we knew that both “Johnny 
Cash” and “Billy Joel” have albums.

How do we encode this constraint?
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Solution (I)

Set 1

Set 2

Isaac 
Newton

Johnny Cash

Billy Joel

Both “Johnny Cash” and 
“Billy Joel” have albums.

• Graph is no longer bi-partite (not necessarily bad)
• Can lead to cliques of size of number of instances in 
the constraint (bad)
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Solution (II)
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Solution (II)

Set 1

Set 2

Isaac 
Newton

Johnny Cash

Billy Joel

Both “Johnny Cash” and 
“Billy Joel” have albums.

Have_Album

Semantic Constraints may be easily encoded
[Talukdar & Periera, ACL 2010]106



Results with Semantic Constraints
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Additional semantic 
constraints help 

improve performance 
significantly.

With Semantic 
Constraints

[Talukdar & Periera, ACL 2010]
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- Text Categorization
- Sentiment Analysis
- Class Instance Acquisition
- POS Tagging
     [Subramanya et. al., EMNLP 2008]

- MultiLingual POS Tagging
- Semantic Parsing

Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work
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Motivation

... how to book a band ...
can you book a day room ...

... bought a book detailing the ...

... wanted to book a flight to ...

... the book is about the ... ... how to unrar a file ...

Domain
Adaptation

...    VBD     DT  NN       VBG        DT   ...

...      VBD     TO    VB    DT  NN   TO  ...

...   DT    NN  VBZ   PP      DT   ...

Unlabeled Data

Small amounts 
of labeled 

source
domain data

Large amounts 
of unlabeled 

target
domain data
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Graph Construction (I)

    “when do you book plane tickets?”

“do you read a book on the plane?”
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Graph Construction (I)

    “when do you book plane tickets?”
WRB   VBP  PRP    VB      NN       NNS

VBP   PRP   VB   DT  NN    IN  DT    NN

“do you read a book on the plane?”

Similarity
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Graph Construction (II)

how much does it cost to book a band ?

what was the book that has no letter e ?

how to get a book agent ?

can you book a day room at hilton hawaiian village ?
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Graph Construction (II)
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to book a
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Graph Construction (II)

you book a
the book that

to book a

a book agent

k-nearest
neighbors?
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Graph Construction (III)

you book a
the book that

to book a

a book agent

the city that

to run a

to become a

you start a

a movie agent
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Graph Construction (III)

you book a
the book that

to book a
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Graph Construction (III)

you book a
the book that

to book a

a book agent

the city that

to run a

to become a

you start a

a movie agent

you unrar a
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Graph Construction - Features

how much does it cost to book a band ?to book acost to book a band
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Graph Construction - Features

how much does it cost to book a band ?

how much to book a flight to paris?
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Left Context

Right Context

Center Word
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Graph Construction - Features

to book a

Trigram + Context

Left Context

Right Context

Center Word

Trigram - Center Word

Left Word + Right Context

Left Context + Right Word

Suffix
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0.4
.
.
.
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Similarity Function

to book a 0.1
0.4
.
.
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Similarity Function
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Approach (I)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
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Approach (I)

can you book a day room at hilton hawaiian village ?

how to  get   a   book  agent ?

how do you book a flight to multiple cities ?

how to unrar a zipped file ?
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Approach (II)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)
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Approach (II)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)

can you book a day room at hilton hawaiian village ?

how do you book a flight to multiple cities ?

you book a
1
n

�
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Approach (III)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)’
2.3. Graph propagation

you unrar a

you start a

you book a
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Approach (III)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)’
2.3. Graph propagation
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Approach (III)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)’
2.3. Graph propagation

you unrar a

you start a

you book a
NN VB .......0.2 0.7 .......

NN VB .......0.3 0.5 .......

NN VB .......0.1 0.6 .......

If two n-grams are similar according to the graph 
then their output distributions should be similar
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Approach (IV)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)’
2.3. Graph propagation
2.4. Viterbi Decode
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1. Train a CRF on labeled data
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Approach (IV)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)’
2.3. Graph propagation
2.4. Viterbi Decode

Can you unrar a zipped file?
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Approach (IV)
1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)’
2.3. Graph propagation
2.4. Viterbi Decode

Can you unrar a zipped file?

NN VB
0.1 0.6

NN VB .......0.2 0.2 .......

+Convex
Combination

Can you unrar a zipped file?

NN VB
0.15 0.45

Posterior 
Decode

Graph 
Propagation
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Approach (V)

1. Train a CRF on labeled data
2. While not converged do:

2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)’
2.3. Graph propagation
2.4. Viterbi Decode
2.5. Retrain CRF on labeled & automatically 
labeled unlabeled data
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Viterbi Decoding : Intuition

p0(y|x)
Space of all 
distributions 
realizable 
using a CRF

Current 
estimate
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Viterbi Decoding : Intuition

p0(y|x)

KL Projection

q(y|x)

q̂(y|x)

p∗(y|x)

Space of all 
distributions 
realizable 
using a CRF

Converged 
graph 
posterior

Current 
estimate
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Corpora

• Source Domain (labeled): Wall Street Journal 
(WSJ) section of the Penn Treebank.

•  Target Domain:

•QuestionBank: 4000 labeled sentences

•Penn BioTreebank: 1061 labeled sentences
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Graph Construction: Question Bank

WSJ Unlabeled Data
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Graph Construction: Question Bank

WSJ Unlabeled Data

Similarity Graph 
Construction

PMI 
Statistics

Labels are not used 
during graph 
construction

10 million questions collected 
from anonymized Internet 

Search Queries
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Graph Construction: Bio

WSJ Unlabeled Data

Similarity Graph 
Construction

PMI 
Statistics

Labels are not used 
during graph 
construction

100,000 sentences chosen 
by searching MEDLINE 

(Blitzer et al. 2006)
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Baseline (Supervised)

•Features: word identity, suffixes, prefixes & 
special character detectors (dashes, digits, 
etc.).

•Achieves 97.17% accuracy on WSJ 
development set.

Not the same 
as features used 

using graph 
construction
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Results

Questions Bio

Baseline 83.8 86.2

Self-training 84.0 87.1

Semi-supervised 
CRF

86.8 87.6
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Analysis

Questions Bio

percentage of unlabeled trigrams not 
connected to and any labeled trigram 12.4 46.8

average path length between an unlabeled 
trigram  and its nearest labeled trigram 9.4 22.4
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Analysis

Questions Bio

percentage of unlabeled trigrams not 
connected to and any labeled trigram 12.4 46.8

average path length between an unlabeled 
trigram  and its nearest labeled trigram 9.4 22.4

Sparse 
Graph
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Analysis

• Pros

• Inductive

• Produces a CRF (standard CRF inference 
infrastructure may be used)

• Issues

• Graph construction

• Graph is not integrated with CRF training
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Big Picture

130

Use case 1 Use case 2

Text Categorization

Sentiment Analysis

Class Instance Acquisition

POS Tagging

Use case 1: Transductive Classification

  Use case 2: Training Better Inductive Model
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- Text Categorization
- Sentiment Analysis
- Class Instance Acquisition
- POS Tagging
- MultiLingual POS Tagging
     [Das & Petrov,  ACL 2011]

- Semantic Parsing

Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work
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• Supervised POS taggers for English have accuracies 
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Motivation

• Supervised POS taggers for English have accuracies 
in the high 90’s for most domains
• By comparison taggers in other languages are not as 
accurate
• Performance ranges from between 60 - 80%

Model in 
resource-rich 
language (e.g., 

English)

Model in 
resource-poor 

language

Transfer 
Knowledge
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Cross-Lingual Projection

The food at Google is good .
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Cross-Lingual Projection

The food at Google is good .
DET NOUN ADP NOUN VERB ADJ .

Das Essen ist gut bei Google .

Automatic alignments from translation data
(available for more than 50 languages)

96% Accuracy
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Cross-Lingual Projection

Das Essen ist gut bei Google.

The
DET

food
NOUN

at
ADP

Google
NOUN

is
VERB

good
ADJ

.

.
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Cross-Lingual Projection
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Cross-Lingual Projection Results

Danish Dutch German Greek Italian Portuguese Spanish Swedish Average

Feature-
HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0

Feature-HMM [Berg-Kirkpatrick, NAACL 2010]136



Cross-Lingual Projection Results

Direct 
Projection 73.6 77.0 83.2 79.3 79.7 82.6 80.1 74.7 78.8

Danish Dutch German Greek Italian Portuguese Spanish Swedish Average

Feature-
HMM 69.1 65.1 81.3 71.8 68.1 78.4 80.2 70.1 73.0
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Graph Regularization

ist gut bei

ist lebhafter bei

ist fein bei
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1000 Essen pro
schlechtes Essen und
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Results
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- Text Categorization
- Sentiment Analysis
- Class Instance Acquisition
- POS Tagging
- MultiLingual POS Tagging
- Semantic Parsing
       [Das & Smith,  ACL 2011]

Outline

• Motivation

• Graph Construction

• Inference Methods

• Scalability

• Applications

• Conclusion & Future Work
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Problem Description

• Extract shallow semantic structure: Frames and 
Roles
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Problem Description

• Extract shallow semantic structure: Frames and 
Roles

I want to go to Jeju Island on SundayI want to go to Jeju Island on Sunday

Predicate

TRAVEL

Frame

Traveller Goal
Time

Role

Argument
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Problem Description

• Predicate identification

• Most approaches assume this is given

• Frame identification

• Argument identification
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Sparse label data

• Labeled data has only about 9,263 labeled 
predicates (targets)

• English on the other hand has a lot more 
potential predicates (~65,000 in newswire)
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Sparse label data

• Labeled data has only about 9,263 labeled 
predicates (targets)

• English on the other hand has a lot more 
potential predicates (~65,000 in newswire)

• Construct a graph with potential predicates as 
vertices

• Expand the lexicon by using graph-based SSL
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Graph Propagation (I)

Seed predicates
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Graph Propagation (II)

Seed predicates
Unseen predicates
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Graph Propagation (III)
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Graph Propagation (IV)
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Results on Unseen Predicates
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When to use Graph-based SSL 
and which method?
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When to use Graph-based SSL 
and which method?

• When input data itself is a graph (relational data)

• or, when the data is expected to lie on a manifold

• MAD, Quadratic Criteria (QC)

• when labels are not mutually exclusive

• MADDL: when label similarities are known

• Measure Propagation (MP)

• for probabilistic interpretation

• Manifold Regularization

• for generalization to unseen data (induction)
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Graph-based SSL: Summary

• Provide flexible representation

• for both IID and relational data

• Graph construction can be key

• Scalable: Node Reordering and MapReduce

• Can handle labeled as well as unlabeled data

• Can handle multi class, multi label settings

• Effective in practice
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• Graph-based SSL for Structured Prediction

• Algorithms: Combining Inductive and graph-based methods

• Applications: Constituency and dependency parsing, Coreference

• Scalable graph construction, especially with      
multi-modal data

• Extensions with other loss functions, sparsity, etc.

• Using side information
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Thanks!

Web: http://graph-ssl.wikidot.com/

162

http://graph-ssl.wikidot.com/
http://graph-ssl.wikidot.com/

